¡@

(°ê¤p)                    ½ì¨ý¥N¼Æ                        
  ¦ÛµM¼Æªº¤À©î (113¦~¥_¥«°ê¤p±ÐºÂ¸ÕÃD)    
  ¼³§JµP²qµP¥[´î¹CÀ¸ ·m12®É¹CÀ¸(¤p¤G) ¼Æ¦rÁä½L¤Wªº¯µ±K(11ªº­¿¼Æ)
  ­Ó¦ì¼Æ¦r9ªº¦ÛµM¼Æ¥i¥H¿n©M²Õ¦X ¥©ºâ123456789¡Ñ8+9 ¼Æ¦r©M(¥[ªk¡B°£ªk)
  ª÷¦r¶ð¼ÆÁ¼ (¥[ªk) ¶µÁå¤G¦ì¼Æ¦r©M(¥[ªk) 12345679²q¼Æ(­¼ªk)
  °£¥H91 ½è¼Æ¶êÀô ¬Û¥[©M15 (¤p¤@)
  ¥¦ªº¤@¥bªº¼Æ¦r©M³£¬O9 (¤p¼Æ°£ªk) ¤E¤E­¼ªkªí¤Û¤è±´¯µ (­¼ªk) ¼Æ¦r³£¬O1ªº©M¿n
  10101 (­¼ªk) ¤£­«½Æ1~9¶ñ¼Æªº­¼¦¡ ²q¤¤§A¿ïªº¼Æ (¤p¥|¡B¤C¤W)
  ³Ì²¤À¼Æ$\frac{n}{n+1}$(¤p¤») ¥|­Ó¥|¦ì¼Æ¥[ªkªº³tºâ§®ªk¡]¤p¤T¡^¡@ ²q¤¤¤ß¡u¼Æ¡v(¤p¤G¡B¤C¤W)
  ²q¤¤³Ì«á§R¥hªº°é°é¼Æ¥Ø(¤p¤@¡B¤C¤W) ²q¤¤¤G­Ó¤ß¼Æ (¤p¥|¡B¤C¤W) ¾ãÂIÄÁ²q¤¤¼³§JµP (¤p¤T)
  ²q¤¤§R°£ªº¼Æ¦r (¤p¤G) ­ËµÛ¼g¡A­pºâµ²ªG¬Û¦P(¤p¤­) 3ªº­¿¼Æ¹CÀ¸(¤p¤G¥H¤W)
  0~99¦Ê¼Æªí¤º±×¦V°Ï°ìªº³W«ß (¤p¤@)

³]­p¤@­Ó½è¼Æ²q¼Æªº¤p¹CÀ¸(¤p¤»¥H¤W)

¦A±Ô¦¬Âó߷Rªº¼Æ(¤C¤W)
  12345679 ¹Ï¥Ü³sÄò¦ÛµM¼Æ¥ß¤è©M(4) ¤À¼Æ¬Û­¼ (¤p¤­) ggb
  ¼Æ¦r¶Â¬}6174 ©_§®ªº¤p¼Æ  0.001002003... ¥©¬Ý´`Àô¤p¼Æ (1)
  ±Æ§Ç®t©Mªº¯ÈµP¹CÀ¸ ¼Ú´X¨½±o¹ï§½¹CÀ¸  (´îªk) ¥©¬Ý´`Àô¤p¼Æ (2)
  ¦¬Âó߷Rªº¼Æ(¤p¥|) Às»ñÂù­M­LÄ~©Ó¿ò²£(³s¤ñ) ©_¶¥Å]¤è°}ºc³yªk (¥[ªk)
  ´î¯u¦]¼Æ¹CÀ¸  (´îªk¡B¦]¼Æ) 17¤Ç°¨(²§¤À¥À¤À¼Æ¥[ªk) «üºâ9ªº­¿¼Æ
  ¹Ï¸Ñ1+2+3+4 ¤jª÷­è(¤ñ¨Ò) «üºâ­¼ªk(6~9)
  ¹Ï¸Ñ1+3+5+7+9 ·Î¤û±Æ(¥[ªk) ­ô¼w¤Ú»®²q·Q 
  ¹Ï¸Ñ1+2+4+8+16+32 ¶O°Òªº±K½X 1¡Ò243 ¦ÊÅÜ100
  ¦P¼Ëªº¬P´Á¼Æ 2178 ¡Ñ 4 = 8712 Å]³N99
  ¦³³W«ßªººâ¦¡ ¶ñ¼Æ¼ÆÁ¼ ¡¼/¡¼¡¼+¡¼/¡¼¡¼+¡¼/¡¼¡¼=1 714 vs 715
  ¤À¼Æ°£¥H¾ã¼Æ (¤p¤») ¥ý­¼°£«á¥[´î ¦Ê³¾Âk±_¹Ï ¼Æ¦r¸Ö
  ¹Ï¥Ü³sÄò¦ÛµM¼Æªº¥ß¤è©M(1) ¥[ªk¹CÀ¸ ¬ö¾å´P§®¸Ñ¼Æ¦rÁ¼
  ¼Æ¦r®Ú ±ÛÂà180«×­¼¿n¤´¬Ûµ¥(¤p¥|) Â_¸zÁ¼ (¼Æ¦rÁ¼)
  3¦ì¼Æ©M2¦ì¼Æªº­¼¿n¥½¤G¦ì¼Æ (¤p¥|)    
       

(°ê¤¤)
¡@
±q¤@¹D¶ÂªO²ßÃD½Í°_ (¼Ò¦¡¡Fpattern) ²q¥X¯È½cªºÃC¦â (¤K¤U) µ¥®t
  »e¸Á¦h¤Ö°¦ (¤K¤W ¤èµ{¦¡) §ä3­Ó¥­¤è¼Æ¡A¥[Á`©M¬O¥­¤è¼Æ  (¤K¤U)  $3^{3}+4^{3}+5^{3}=6^{3}$    (¤K¤U)
²¦¤ó©w²zÀ³¥Î--§é½uªø¨D¥¿¤è§Î­±¿n (¤K¤W) ¤T³s¦©Àô (¦¡¤l¸Õºâ)  (¤C¤W) ¹Ï»¡µ¥¤ñ¯Å¼Æ©M¤½¦¡   (¤K¤U)
  ¦è¤¸¦~¤À¥½¨â¦ì (11­¿¼Æ)  (¤C¤W) ´´ªi©Ô«´¼Æ¦C¥­¤è©M©Ê½è 333sªº¥­¤è
  $\frac{(a+b)^3+a^3}{(a+b)^3+b^3}=\frac{(a+b)+a}{(a+b)+b}=\frac{2a+b}{2b+a}$   (¤K¤W) µe¤¤ºâ³NÃD¡qMental Arithmetic¡r ©t¿Wªº7  (¤C¤W)
  ³Qn¾ã°£ªº«en¦ì¼Æ(n=1~10)  (¤C¤W) ­±¿n¬Û¦P¶Ü(²¦¤ó©w²zÀ³¥Î)  (¤K¤W) ²q¤¤¨â¤H©Ò¿ï¨úªº¼Æ   (¤C¤W)
  1331¥ß¤è¼Æ (¤K¤W) Á`¬O§¹¥þ¥­¤è¼Æ   (¤K¤U) µ¥®t ¦³³W«ß¥­¤è¼Æ  (¤K¤W)
¤­¦ì¼Æ¥i¤º¬D3­¿¼Æªº¤T¦ì¼Æ  (¤C¤W) ®Ú¦¡Ãì ¦p¦ó§PÂ_11ªº­¿¼Æ    (¤C¤W)
  ¯S®íºâ¦¡¨D¥¿¥­¤è®Ú (¤K¤W) ¾ã °£ (¤½­¿¼Æ) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$=$\frac{1}{x+y+z}$¬O§_¦³¾ã¼Æ¸Ñ?
  ¸Ñ¬Û¥[©M15 (¤C¤W) ®üµs¤Àª÷¹ô  (¤C¤W) ¤û¹yªº¤û¦Y¯ó°ÝÃD (¤C¤U)
  3N5+5N3+7N¬O15ªº­¿¼Æ  (¤C¤W) Áo¼zªü©Ô§B¤k¨à½æÄ«ªG  (¤C¤U) ²q¥X¨â­Ó«D­t¾ã¼Æ
  1212 ¡Ñ 343434 (¤C¤W) ¥­¤À»ÉªO (¸Ñ¤@¦¸¤èµ{¦¡)  (¤C¤W) ¼²²y®æ¤lÂI¼Æ (¦]¼Æ¡B­¿¼Æ)
  666...6¡Ñ666...7 (¤C¤W) ²q¥X¸¹½XµPÁ`©M (¤C¤W) $\frac{2^3+3^3}{3^3+4^3}=\frac{2+3}{3+4}$³oºâ¦¡¥©¦X¶Ü?  (¤K¤W)
  9¡Ñ109....989 (©µ¦ù) ²q¤ß¼Æ a$\sqrt{\frac{c}{b}}$=$\sqrt{a+\frac{c}{b}}$ªº±ø¥ó  (¤K¤W)
  ¯«©_1089  (¤C¤W) §Aªº¤ß¡A§Úª¾  (¤C¤W) ¹Ï¥Ü$\sqrt{a}+\sqrt{b}$ >$\sqrt{a+b}$   (¤K¤W)
  ³Q0¨ú¥Nªº¼Æ¦r(9ªº­¿¼Æ) ²q¤¤¤G¦ì¼Æ (¤C¤W) ¹Ï¥Ü$\frac{1}{3}=\frac{1+3}{5+7}=\frac{1+3+5}{7+9+11}$  (¤K¤U)
  ¨â­Ó¤T¦ì¼Æªº­¼¿n (¤K¤W) ²q¥Í¤é©M¦~ÄÖ  (¤C¤W) ¹Ï¸Ñ¤T¤À¤§¤@  (¤K¤U)
  ´îÁYµ¥¤ñ¯Å¼Æ ´ú¤ß³N³tºâ  (¤C¤W) µøı»~®t64=65
  4­Ó¥i©Èªº¼Æ (¤C¤W) (§¹¥þ¥­¤è¼Æ) §Aªº¤ß¼Æ  (¤C¤W) ¹Ï¥Ü³sÄò¦ÛµM¼Æ¥ß¤è©M(3)  (¤K¤W)
  ¨â­Ó»ë¤lªº­¼¿n©M  (¤C¤W) ²q¤¤¨â¼Æ¬Û´îªº®t  (¤C¤W) ¹Ï¥Ü³sÄò¦ÛµM¼Æ¥ß¤è©M(2)  (¤K¤W)
  ·m¼Æ¦r¹CÀ¸ (¤C¤W) ²q¤¤¾ë§JµP (¤C¤U) ¥Ñ99­¼ªkªí¬Ý³sÄò¾ã¼Æ¥ß¤è©M  (¤K¤W)
  «en¦ì¼Æ³Qn¾ã°£ (¤C¤W) ºâ¼Æ²q¤¤¾ë§JµP (¤C¤W) 3x+1§J©ÔÍÀ²q·Q
  ©Ç©± ¯ÈµPÅ]³N (¤C¤W) ¹Ï¥Ü$\frac{a}{b}$<$\frac{a+c}{b+d}$<$\frac{c}{d}$
  µ¥©Mªº¤T¨¤§Î©PÃä¼Æ (¤K¤W) ¤­²Õ¦³½ì¨ýªº¼Æ¦r ¹Ï¥Ü¥ß¤è®t¤½¦¡  (¤K¤W)
  ¤E¤E­¼ªkªí¤E®c®æ³W«ß (¤C¤W) Å]³N¯ÈµP (¤K¤U) µ¥®t ¹Ï¸Ñ²©ö¤è®Úªº¤Æ²  (¤K¤W)
  ±´¯Á (OK)2=LOOK (¤K¤W) ¬Û¦üÅܤjÅܤp ¨½µ{¼Æ(¼Æ¦C)  (¤K¤U)
  ¤G¦ì¼Æ­¼¥H99ªº­¼¿n¼Æ¦r©M (¤C¤W) ±À²¾µ¥®t¼Æ¦C¯È¥d¨D¤¤¥¡¼Æ¦r©M  (¤K¤U) ¸H§Î¼Æ¦C
  ­¼¥H99(¤C¤U) ¥¿¾ã¼Æ5¦¸¤èªº­Ó¦ì¼Æ  (¤K¤W)(­¼¤è) ´´ªi«´¼Æ¦C (¼Æ¦C)
  ­¼¿n®tÁ`¬O8 ¨û¤÷ªº¿ò²£(Âd¤lªºÁ¼ÃD)  (¤C¤W) ´´ªi©Ô«´¼Æ¦C»P²¦¤ó¼Æ²Õ
  ©M»P¿n¬Û¦Pªº¨â¼Æ  (¤C¤U) Áa¾î§R  (¤C¤W) ½è¼Æµ¥®t¼Æ¦C (¼Æ¦C)
  ¨â­Ó¥­¤è¼Æ©M¬Û­¼¿n (¤K¤W) ¦A½ÍÁa¾î§R (¤C¤W) ¤ë¾ä¤é´Áªº³W«ß  (¤C¤W)
  ¥|­Ó4²Õ¦¨100  (¤K¤W) Áa¾î§R n ¶¥¼Æ¦r¤è½L (¤K¤U) ´M§ä³W«ß(¼Æ«¬Ãö«Y)
  ¦³½ìªº­pºâ¦¡ (¤K¤W)  61¡Ñ9+(61+9)=619 Áa¾î§R­¼¿n  (¤C¤W) ¤Ì©Ô¦h¶ë¿zªk  (¤C¤W)
  ¥­¤è©Mµ¥¦¡   (¤K¤U) ¶ø ¹B ¤­ Àô (10n-1)2ªº¦U¦ì¼Æ¦r©M  (¤C¤W)
  ³sÄò4­Ó¦ÛµM¼Æ¬Û­¼¥[1¬O¥­¤è¼Æ  (¤K¤U)
ªM¤l¥þ½Âন¥¿¥ß¶Ü (¤C¤W) 3...33©M6..67ªº¥­¤è©M»P¥ß¤è©M  (¤K¤W)
  ¾ã¼Æªº´îªk  (¤C¤W) ½ÂàªM¤l (¤C¤W) ¥©¥Î°h¦ì´îªk³tºâ¥æ´«­º¥½¼Æ¦r®t (¤C¤W)
  ¦³¸¹¼Æªº¥[´îªk¡]Âû³Jªk¡^ (¤C¤W) ©¹ªð®É¶¡   (¤C¤U) ¬¥¤ô¤Û¤è¥­¤è©M  (¤C¤W)
  ¯S®í¤À¼Æªº¥tÃþ´îªk  (¤K¤U) ¤@¦Ê¤¸ªº°g«ä (¤C¤W) ¼Æ¾Ç¤Ñ¤~ªº¦~ÄÖ§®ÃD
  ¤½¤À¥À«D³Ì²¯u¤À¼Æ¬Û¥[©M (¤C¤W) ·í­^»y¹J¤W¼Æ¾Ç (¤C¤W) ¹ï¨¤½u¸g¹L¦h¤Ö¤è®æ
  ¨â­Ó³æ¦ì¤À¼Æ¦X¦¨³æ¦ì¤À¼Æ ¥áµf¹Ïªº¦~ÄÖ (¤C¤W) ­pµ{¨®¼Æ
  ¦³²z¼Æªí¥Ü¦¨¬Û²§³æ¦ì¤À¼Æ©M »ë¤l¤T¦ì¼Æ (¤C¤W) ªdªO¤Wªº°t¤è (¤K¤U)
  ¦^¤å¼Æ º®¤Ò»P´U¤l (¤C¤W) µLÁn³Ó¦³Án (¤K¤W)
  ­ËÂà¼Æªº¬Û­¼ ¤j¥ÕÃT (¤C¤W) $\sqrt{ }$ ÁäÃa¤F (¤K¤W)
  Åå©_11ªº­¿¼Æ (¤C¤U) §G°}¹Ï(¤èµ{²Õ)  (¤C¤U) $\sqrt{2}$ªº¥tºØ­·±¡ (¤K¤W)
  13ªº­¿¼Æªº§P§Oªk   (¤C¤W) ¶ê©P²v¸Ö ¤T¨¤§Î¼Æ
  19ªº­¿¼Æªº§P§Oªk    (¤C¤W) ¯x¤Ø¸n¤T¼Æ (¤C¤U) ¥|¨¤¼Æ»P²¦¤ó¼Æ
  §PÂ_7¡B11¡B13ªº­¿¼Æ    (¤C¤W) Å]¤è°}  (¤K¤U) ¥¿¦]¼Æªº¥¿¦]¼Æ­Ó¼Æªº¥ß¤è©M (¤C¤W)
  100¥H¤ºªº½è¼Æªí (¤C¤W) ¥´Ây ¬Û¦P§t¶q (¤C¤U)
  ¥Í²£½è¼Æ   (¤C¤W) ¥Yºlªºµ²½× ®à¹C--Spot it
  ª½¦¡¶}¤èªk¨D¥¿¥­¤è®Ú  (¤K¤W) ³o®a¤H¦~ÄÖÁôÂïµ±K (¤C¤W) °£¥H9ªº¾l¼Æ ¤À¼Æ³s­¼¿n¤£µ¥¦¡ (¤K¤W)
  «ö¤ñ¨Ò¤À°t°¨¤Ç½Í¤À¼Æ©î¤À (¤C¤W)    

(°ª¤¤)
¡@
 

$\small\underbrace{3333\dots33}_{n­Ó3}\times\underbrace{3333\dots34}_{(n-1)­Ó3} =\small\underbrace{1111\dots11}_{n­Ó1}\underbrace{2222\dots22}_{n­Ó2}$ 

¡q¾\Ū¥»¤å¡r(10¦~¯Å)

¼Æ½ì64©M95 (10¦~¯Å)  
  $cos \theta \approx1-\dfrac{\theta^2}{2}$  (·í£cÁͪñ©ó0) y=x2¨ç¼Æ¹Ï¤W¨âÂI³s½u¬q©Mx¶bªº¥æÂI  2222222223¡Ñ4444444443
  111¦~¾Ç´ú¼Æ¾ÇA(18~19) 111¦~¾Ç´ú¼Æ¾ÇA(20a) 111¦~¾Ç´ú¼Æ¾ÇA(20b)
  ¤ñ¸û1000010001©M1000110000 cos £c+cos 2£c+...+cos n£c ¤T¨¤¨ç¼Æªº®t¤Æ¿n¤½¦¡
  ¤T¨¤¨ç¼Æªº©M¤Æ¿n¤½¦¡ ¤T¨¤¨ç¼Æªº©M®t¨¤¤½¦¡ µL½a¯Å¼Æªº¦¬ÀÄ»Pµo´²
  ¤W¼Ó±è¤@¨B¤@¶¥©Î¤G¶¥(µáªi©Ô«´¼Æ¦C) ¤ÏÂà¼Æ¬Û­¼µ¥¦¡ ¹Ï¥Ü¦¬ÀĵL½aµ¥¤ñ¯Å¼Æ©M(1)
  «ü¼Æ«¬¤j¼Æªº¼Æ¦r®Ú(¦P¾l) 163+503+333=165033¡]°ª¤@¡^ ¹Ï¥Ü¦¬ÀĵL½aµ¥¤ñ¯Å¼Æ©M(2)
  1+3+5+...+(2n-1)+...+5+3+1 (°ª¤@) ±ö´Ë½è¼Æ»P§¹¥þ¼Æ(µ¥¤ñ) ¹Ï¥Ü³sÄò¥¿¾ã¼Æ¥­¤è©M¤½¦¡¡]°ª¤@¡^
  ¿n©Mªº¥©¦X(°ª¤@) ¹Ï¸Ñ³sÄò¦ÛµM¼Æ¥ß¤è©M¤½¦¡¡]°ª¤@¡^ ³sÄò­¼¿n©Mªºµ¥¦¡(°ª¤@)
  3­Ó2¦p¦ó²Õ¦¨©Ò¦³¥¿¾ã¼Æ(°ª¤@) ¨â­Ó¥¿¾ã¼Æ©Mµ¥©ó­ËÂà¼Æ©Mªº±ø¥ó ¹Ï¸Ñ¾l©¶©w²z (°ª¤G)
  ¹Ï¸Ñ¬_¦è¤£µ¥¦¡ (°ª¤@) $\sqrt{12345678987654321}$ =  ? µ¥¤ñªº¹Ð«Ê©¹¨Æ
  ª«¤£ª¾¨ä¼Æ (®]¤lºâ¸g) ¦hÃä§Î¼Æ ¼Ú´X¨½¼w¥X¥Í©ó¦ó®É
  1946 «íµ¥¦¡3(°ª¤@) ¬üÄRªº¿ù»~--²q·Qªº¯u»P°²
  ¤ñ¸ûAM¡BGM¡BHM °©µP´´ªi©Ô«´¼Æ¦C »¼°j/µU¤l©M¥i¥i¨È
  §Q¥Îºâ´X¤£µ¥¦¡ÃÒ©ú ¤Àªo (¤£©w¤èµ{¦¡) »¼°jÀ³¥Î/¦ºùØ°k¥Í
  ¬~µP ´´ªi©Ô«´Á_»Ø ¤@­Ó¦³½ìªº¶¥­¼µ¥¦¡
  µ¥¤ñ¼Æ¦r¤è¶ô 142857 1+22+..+999999999=?
  °ïÅ|¿n¤ì¨D¯Å¼Æ¥­¤è©M(°ª¤@) ÁÓÂà¬Û°£ªk ¦æ¦C¦¡¾É¦h¶µ¦¡­¼ªk¤½¦¡(11A)
  ©Ç©±¤£©Ç--½Í¼Æ¾ÇÂk¯Çªk ¹Ï¸Ñ 1+(1+2)+...+(1+2+3+...+n)(°ª¤@) ³yn­Ó³sÄòªº¦X¼Æ (°ª¤@)
 

$\large\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+$ ........ =  ?

Hollowood function  (10¦~¯Å) ´Ð¬ü¥±¤½¦¡±À¾É¤T¨¤¨ç¼Æ­¿¨¤¡B¥b¨¤¤½¦¡ (12¦~¯Å)
  ¤×©Ô¤½¦¡±À¾É¤T¨¤¨ç¼Æ©M®t¤½¦¡(12¦~¯Å)    

 

 

 

Copyright © ©÷ª¨¤u§@§{(¼Æ¾Çºô¯¸)all rights reserved.