探討 163+503+333=165033
17×9=153,1667×99=165033,166667×999=166500333
13+53+33=153
163+503+333=165033
1663+5003+3333=166500333
令 n =10k+1,k=0,1,2,3,... 則
a=$1\underbrace{666\cdots6}_{ k個6 }=\frac{n}{6}-\frac{2}{3}$
b=$5\underbrace{000\cdots0}_{ k個0 }=\frac{n}{2}$
c=$3\underbrace{333\cdots3}_{ k個3}=\frac{n}{3}-\frac{1}{3}$
因此 a3+b3+c3=$\large\frac{(n^3-n^2+2n-2)}{6}$=$\large\frac{(n^2+2)(n-1)}{6}$
因為 a×n2+b×n+c=
$\large(\frac{n}{6}-\frac{2}{3})$n2+$\large\frac{n}{2}$n+$\large(\frac{n}{3}-\frac{1}{3})$=$\large\frac{(n^3-n^2+2n-2)}{6}$=$\large\frac{(n^2+2)(n-1)}{6}$
所以 a3+b3+c3=a×n2+b×n+c
Copyright © 昌爸工作坊 All Rights Reserved.