找三個平方數,加總和是平方數
三個整數 n、n+1、n(n+1) 或 n-1、n、n(n-1),其平方和是平方數。
也就是說,「兩個連續整數與其乘積的平方和一定是平方數。」(為什麼 ? )
n2+(n+1)2+[n(n+1)]2
= n2+n2+2n+1+n2(n2+2n+1) = n4+2n3+3n2+2n+1 = (n4+2n3+n2)+(2n2+2n)+1= n2(n+1)2+2n(n+1)+1 = {n(n+1)+1]2 = ( n2+n+1)2 |
n2+(n-1)2+[n(n-1)]2
= n2+n2-2n+1+n2(n2-2n+1) = n4-2n3+3n2-2n+1 = (n4-2n3+n2)+(2n2-2n)+1= n2(n-1)2+2n(n-1)+1 = {n(n-1)+1]2 = ( n2-n+1)2 |
n=1,12 + 22 + 22 = 3 2
n=2,22 + 32 + 62 = 7 2
n=3,32 + 42 + 122 = 13 2
n=4,42 + 52 + 202 = 21 2
Copyright ©昌爸工作坊(數學網站) all rights reserved.