找三個平方數,加總和是平方數

 

三個整數 n、n+1、n(n+1) 或 n-1、n、n(n-1),其平方和是平方數。

也就是說,兩個連續整數與其乘積的平方和一定是平方數。」(為什麼 ? )

n2+(n+1)2+[n(n+1)]2 =
n2+n2+2n+1+n2(n2+2n+1) =
n4+2n3+3n2+2n+1 =
(n4+2n3+n2)+(2n2+2n)+1=
n2(n+1)2+2n(n+1)+1
=
{n(n+1)+1]2 =
( n2+n+1)2
n2+(n-1)2+[n(n-1)]2 =
n2+n2-2n+1+n2(n2-2n+1) =
n4-2n3+3n2-2n+1 =
(n4-2n3+n2)+(2n2-2n)+1=
n2(n-1)2+2n(n-1)+1
=
{n(n-1)+1]2 =
( n2-n+1)2

 

n=1,12 + 22 + 22 = 3 2

n=2,22 + 32 + 62 = 7 2

n=3,32 + 42 + 122 = 13 2

n=4,42 + 52 + 202 = 21 2

 

輸入n=       

  

 

 


Copyright ©昌爸工作坊 all rights reserved.

 


Copyright ©昌爸工作坊(數學網站) all rights reserved.