總是平方數
12 + 22 + 22 = 9 = 3 2
22 + 32 + 62
= 49 = 7 2
32 + 42 + 122 =169 = 13 2
42 + 52 + 202 = 441 = 21
2
顯然,左式是 n2+(n+1)2+[n(n+1)]2,n是自然數。
n2+(n+1)2+[n(n+1)]2 = n2+n2+2n+1+n2(n2+2n+1) = n4+2n3+3n2+2n+1 = (n4+2n3+n2)+(2n2+2n)+1
= n2(n+1)2+2n(n+1)+1
= [n(n+1)]2+2n(n+1)+12 所以 n2+(n+1)2+[n(n+1)]2 總是平方數。 |
Copyright ©2007昌爸工作坊 all rights reserved