棣美弗公式推導三角函數倍角、半角公式
高中數學教材的棣美弗公式 $(cos\theta+i \,sin\theta)^n=cos\, n\theta+i sin\, n\theta$,n是整數。
倍角公式
$cos\, 2\theta+i sin\, 2\theta=(cos\theta+i
\,sin\theta)^2=$
$cos^2\theta+2(cos\theta)(i \,sin\theta)+(i \,sin\theta)^2=$
$cos^2\theta+2isin\theta cos\theta-sin^2\theta=(cos^2\theta-sin^2\theta)+2isin\theta
cos\theta$
得$$cos2\theta=cos^2\theta-sin^2\theta$$
$$sin2\theta=2sin\theta cos\theta$$
$cos\, 3\theta+i sin\, 3\theta=(cos\theta+i \,sin\theta)^3=$
$(cos\theta)^3+3 cos\theta(isin\theta)^2+3( cos\theta)^2(isin\theta)+(i\,sin\theta)^3=$
$cos^3\theta-3 cos\theta sin^2\theta+3 cos^2\theta (isin\theta)-i\,sin^3\theta=$
$cos^3\theta-3 cos\theta (1-cos^2\theta)+3(1- sin^2\theta) (isin\theta)-i\,sin^3\theta=$
$(4cos^3\theta-3 cos\theta) +i(3 sin\theta-4sin^3\theta)=$
得$$cos3\theta=4cos^3\theta-3 cos\theta$$
$$sin3\theta=3 sin\theta-4sin^3\theta$$
半角公式
$cos\theta+i sin\theta=(cos\frac{\theta}{2}+i \,sin\frac{\theta}{2})^2=$
$(cos\frac{\theta}{2})^2+2(cos\frac{\theta}{2})(i \,sin\frac{\theta}{2}))+(i\,sin\frac{\theta}{2})^2=$
$(cos\frac{\theta}{2})^2+2(cos\frac{\theta}{2})(i \,sin\frac{\theta}{2}))-(sin\frac{\theta}{2})^2=$
$cos^2\frac{\theta}{2}-(1-cos^2\frac{\theta}{2})+i\,2(cos\frac{\theta}{2})(sin\frac{\theta}{2})=$$(2cos^2\frac{\theta}{2}-1)+i\,2(cos\frac{\theta}{2})(sin\frac{\theta}{2}))$
得 $cos\theta=2cos^2\frac{\theta}{2}-1$,因此
$$cos\frac{\theta}{2}=\pm\sqrt\frac{1+cos\theta }{2}$$
$cos\theta+i sin\theta=(cos\frac{\theta}{2}+i \,sin\frac{\theta}{2})^2=$
$(cos\frac{\theta}{2})^2+2(cos\frac{\theta}{2})(i \,sin\frac{\theta}{2}))-(sin\frac{\theta}{2})^2=$
$(1-sin^2\frac{\theta}{2})+2(cos\frac{\theta}{2})(i \,sin\frac{\theta}{2})-(sin^2\frac{\theta}{2})=$
$(1-2sin^2\frac{\theta}{2})+i\,2(cos\frac{\theta}{2})(sin\frac{\theta}{2}))=$
得 $cos\theta=1-2sin^2\frac{\theta}{2}$,因此
$$sin\frac{\theta}{2}=\pm\sqrt\frac{1-cos\theta }{2}$$=
Copyright ©昌爸工作坊(數學網站) all rights reserved.