有規律平方數
尋找下列平方數的數字規律
n | $(\frac{10^n+2}{3})^2$ | $(\frac{10^n+5}{3})^2$ | $(\frac{10^n+8}{3})^2$ | |||
1 |
|
|
|
|||
2 | 1156 | 1225 | 1296 ※ | |||
3 | 111556 | 112225 | 112896 | |||
4 | 11115556 | 11122225 | 11128896 | |||
5 | 1111155556 | 1111222225 | 1111288896 |
n | $(\frac{2\times10^n+1}{3})^2$ | $(\frac{2\times10^n+4}{3})^2$ | $(\frac{2\times10^n+7}{3})^2$ | ||||||
1 |
|
|
|
||||||
2 | 4489 | 4624 | 4761 ※ | ||||||
3 | 444889 | 446224 | 447561 | ||||||
4 | 44448889 | 44462224 | 44475561 | ||||||
5 | 4444488889 | 4444622224 | 4444755561 |
n | $(\frac{3\times10^n+3}{3})^2$ | $(\frac{3\times10^n+6}{3})^2$ | $(\frac{3\times10^n+9}{3})^2$ | ||||||
1 |
|
|
|
||||||
2 | 10201 | 10404 | 10609 | ||||||
3 | 1002001 | 1004004 | 1006009 | ||||||
4 | 100020001 | 100040004 | 100060009 | ||||||
5 | 10000200001 | 10000400004 | 10000600009 |
如果 a和b都是小於10的自然數且a+b是3的倍數,則當n=1、2、3、......,$(\frac{a\times10^n+b}{3})^2$的數字有規律。
$(\dfrac{51}{3})^2$=289
$(\dfrac{501}{3})^2$=27889
$(\dfrac{5001}{3})^2$=2778889
----------------------------
$(\dfrac{5\overbrace{0\cdots0}^{ (n-1)個 0 }1}{3})^2$=$2\underbrace{7\cdots7}_{ (n-1)個 7 }8\underbrace{8\cdots8}_{ (n-1)個 8}9$,n是自然數。
$2\underbrace{7\cdots7}_{ (n-1)個 7 }8\underbrace{8\cdots8}_{ (n-1)個 8}9$
= $2\times10^{2n}+8\times10^n+9+\dfrac{7}{9}(10^{2n}-10^{n-1})+\dfrac{8}{9}(10^n-10)$
= $\dfrac{1}{9}(18\times10^{2n}+72\times10^n+81+7\times10^{2n}-7\times10^{n+1}+8\times10^n-80)$
= $\dfrac{1}{9}(25\times10^{2n}+10\times^n+1)$
= $\dfrac{1}{9}(5\times10^n+1)^2$
= $(\dfrac{5\times10^n+1}{3})^2$
延伸閱讀︰關於一類特殊的完全平方數,連威翔
Copyright © 昌爸工作坊 all rights reserved.