有規律平方數

尋找下列平方數的數字規律

n $(\frac{10^n+2}{3})^2$ $(\frac{10^n+5}{3})^2$ $(\frac{10^n+8}{3})^2$
1
16
25
36
2 1156 1225 1296 
3 111556 112225 112896
4 11115556 11122225 11128896
5 1111155556 1111222225 1111288896

 

n $(\frac{2\times10^n+1}{3})^2$ $(\frac{2\times10^n+4}{3})^2$ $(\frac{2\times10^n+7}{3})^2$
1
49
64
81
2 4489 4624 4761 
3 444889 446224 447561
4 44448889 44462224 44475561
5 4444488889 4444622224 4444755561

 

n $(\frac{3\times10^n+3}{3})^2$ $(\frac{3\times10^n+6}{3})^2$ $(\frac{3\times10^n+9}{3})^2$
1
121
144
169
2 10201 10404 10609
3 1002001 1004004 1006009
4 100020001 100040004 100060009
5 10000200001 10000400004 10000600009

 

如果 a和b都是小於10的自然數且a+b是3的倍數,則當n=1、2、3、......,$(\frac{a\times10^n+b}{3})^2$的數字有規律

 

$(\dfrac{51}{3})^2$=289

$(\dfrac{501}{3})^2$=27889

$(\dfrac{5001}{3})^2$=2778889

----------------------------

$(\dfrac{5\overbrace{0\cdots0}^{ (n-1)個 0 }1}{3})^2$=$2\underbrace{7\cdots7}_{ (n-1)個 7 }8\underbrace{8\cdots8}_{ (n-1)個 8}9$,n是自然數。

 

$2\underbrace{7\cdots7}_{ (n-1)個 7 }8\underbrace{8\cdots8}_{ (n-1)個 8}9$

= $2\times10^{2n}+8\times10^n+9+\dfrac{7}{9}(10^{2n}-10^{n-1})+\dfrac{8}{9}(10^n-10)$

= $\dfrac{1}{9}(18\times10^{2n}+72\times10^n+81+7\times10^{2n}-7\times10^{n+1}+8\times10^n-80)$

= $\dfrac{1}{9}(25\times10^{2n}+10\times^n+1)$

= $\dfrac{1}{9}(5\times10^n+1)^2$

= $(\dfrac{5\times10^n+1}{3})^2$

 

延伸閱讀︰關於一類特殊的完全平方數,連威翔


Copyright © 昌爸工作坊 all rights reserved.