根式鏈
$\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+...}}}}}=2$
$\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+...}}}}}=3$
$\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+...}}}}}=4$
$\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+...}}}}}=5$
....
$\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+...}}}}}=a$,$a$是大於1的自然數.
假設$x=\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+...}}}}}$,則
$x^2=a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+...}}}}}$,
$x^2=a(a-1)+x$,
$(x-a)(x+a-1)=0$,解得$x=a$。