猴子與可可亞
有五個人帶了一隻猴子搭船出海,
突然遇到狂風暴雨, 船隻失去動力後飄流到一座小島嶼。他們在島上找到可可亞
,並在天黑前把可可亞採收起來,
準備隔日再平分這些可可亞。入夜後,五個人進入夢鄉,猴子卻煩躁一夜未眠。五人都被猴子吵醒過來一 次,但是沒有同時被吵醒。每一位醒過來的都趁其他四人睡著時,私自將一顆可可亞給猴子吃掉,安撫牠的情緒,而剩餘的可可亞剛好可以五等分
,自己就藏起其中一等分。隔日早上,大家起床後一起分發可可亞,先將一顆分給猴子吃掉,
剩下的可可亞可以平分成五等分,請問原來採收的可可亞最少有多少顆? |
我們先討論下列這個問題的通則結果,
依此類推直到步驟(n+1)為止。
4K2=5K3+1
.............(3) 其中m=1,2,3,.....,n+1,Km都是正整數 將上列各式等號兩邊同時加上4
$\frac{4}{5}$(N+4)=4(K1+1)
$\frac{4}{5}$(N+4)=5(K2+1) ($\frac{4}{5}$)2(N+4)=$\frac{4}{5}$[5(K2+1)] ($\frac{4}{5}$)2(N+4)=4(K2+1)
($\frac{4}{5}$)2(N+4)=5(K3+1) ($\frac{4}{5}$)3(N+4)=$\frac{4}{5}$[5(K3+1)]
($\frac{4}{5}$)3(N+4)=4(K3+1)
($\frac{4}{5}$)n(N+4)=5(Kn+1+1) ($\frac{4}{5}$)n+1(N+4)=$\frac{4}{5}$[5(Kn+1+1)] ($\frac{4}{5}$)n+1(N+4)=4(Kn+1+1)N+4=($\frac{5}{4}$)n+1 4(Kn+1+1) N=($\frac{5^{n+1}}{4^{n}}$) (Kn+1+1)-4 因為N是正整數,且4和5互質,所以Kn+1+1是4n的倍數。因為$\frac{K_{n+1}+1}{4^n}$的最小正整數值是1,所以N的最小值是 5n+1 -4 , 原始題目中有5個人,有6個步驟分發可可亞,所以可可亞最少有 56 - 4 = 15621(個)。
|
Copyright © 昌爸工作坊 all rights reserved.