連續乘積和的等式
n是正整數 $(n+1)\displaystyle\prod_{x=1}^{n}x$=$\displaystyle\prod_{x=1}^{n+1}x$−$\displaystyle\prod_{x=0}^{n}x$ $(n+1)\displaystyle\prod_{x=2}^{n+1}x$=$\displaystyle\prod_{x=2}^{n+2}x$−$\displaystyle\prod_{x=1}^{n+1}x$ $(n+1)\displaystyle\prod_{x=3}^{n+2}x$=$\displaystyle\prod_{x=3}^{n+3}x$−$\displaystyle\prod_{x=2}^{n+2}x$ $(n+1)\displaystyle\prod_{x=4}^{n+3}x$=$\displaystyle\prod_{x=4}^{n+4}x$−$\displaystyle\prod_{x=3}^{n+3}x$ ..................... ..................... $(n+1)\displaystyle\prod_{x=n}^{n+n-1}x$=$\displaystyle\prod_{x=n}^{n+n}x$−$\displaystyle\prod_{x=n-1}^{n+n-1}x$ $(n+1)\displaystyle\prod_{x=n+1}^{n+n}x$=$\displaystyle\prod_{x=n+1}^{n+n+1}x$−$\displaystyle\prod_{x=n}^{n+n}x$
|
將左列各式加總得 $(n+1)\displaystyle\sum_{i=1}^{n+1}\prod_{x=i}^{n+i-1}x$=$\displaystyle\prod_{x=n+1}^{n+n+1}x$−$\displaystyle\prod_{x=0}^{n}x$=$\displaystyle\prod_{x=n+1}^{n+n+1}x$ 所以 $\displaystyle\sum_{i=1}^{n+1}\prod_{x=i}^{n+i-1}x$=$\displaystyle\prod_{x=n+2}^{2n+1}x$ 例如 n=1,$\displaystyle\sum_{i=1}^{2}\prod_{x=i}^{i}x$=$\displaystyle\prod_{x=3}^{3}x$,即 1+2=3 n=2,$\displaystyle\sum_{i=1}^{3}\prod_{x=i}^{i+1}x$=$\displaystyle\prod_{x=4}^{5}x$,即 1×2+ 2×3+ 3×4= 4×5 n=3,$\displaystyle\sum_{i=1}^{4}\prod_{x=i}^{i+2}x$=$\displaystyle\prod_{x=5}^{7}x$,即 1×2×3+ 2×3×4+ 3×4×5+4×5×6= 5×6×7 n=4,$\displaystyle\sum_{i=1}^{5}\prod_{x=i}^{i+3}x$=$\displaystyle\prod_{x=6}^{9}x$,即 1×2×3×4+ 2×3×4×5+3×4×5×6+4×5×6×7+5×6×7×8= 6×7×8×9 |
[註1]:$\displaystyle\sum_{i=1}^{5}$=1+2+3+4+5
[註2]:$\displaystyle\prod_{i=1}^{5}$=1×2×3×4×5
Copyright@昌爸工作坊all rights reserved.