連續乘積和的等式
n是正整數 (n+1)n∏x=1x=n+1∏x=1x−n∏x=0x (n+1)n+1∏x=2x=n+2∏x=2x−n+1∏x=1x (n+1)n+2∏x=3x=n+3∏x=3x−n+2∏x=2x (n+1)n+3∏x=4x=n+4∏x=4x−n+3∏x=3x ..................... ..................... (n+1)n+n−1∏x=nx=n+n∏x=nx−n+n−1∏x=n−1x (n+1)n+n∏x=n+1x=n+n+1∏x=n+1x−n+n∏x=nx
|
將左列各式加總得 (n+1)n+1∑i=1n+i−1∏x=ix=n+n+1∏x=n+1x−n∏x=0x=n+n+1∏x=n+1x 所以 n+1∑i=1n+i−1∏x=ix=2n+1∏x=n+2x 例如 n=1,2∑i=1i∏x=ix=3∏x=3x,即 1+2=3 n=2,3∑i=1i+1∏x=ix=5∏x=4x,即 1×2+ 2×3+ 3×4= 4×5 n=3,4∑i=1i+2∏x=ix=7∏x=5x,即 1×2×3+ 2×3×4+ 3×4×5+4×5×6= 5×6×7 n=4,5∑i=1i+3∏x=ix=9∏x=6x,即 1×2×3×4+ 2×3×4×5+3×4×5×6+4×5×6×7+5×6×7×8= 6×7×8×9 |
[註1]:5∑i=1=1+2+3+4+5
[註2]:5∏i=1=1×2×3×4×5
Copyright@昌爸工作坊all rights reserved.