斐波拉契數列平方和性質

 斐波拉契數列 1,1,2,3,5,8,13,21,34,55,89,.......,fn其中第n項 fn = fn-1 + fn-2。

 

  $1^2+1^2=1\times 2$
   
  $1^2+1^2+2^2=2\times 3$
   
  $1^2+1^2+2^2+3^2=3\times 5$
   
  $1^2+1^2+2^2+3^2+5^2=5\times 8$

 

可以推廣得,$1^2+1^2+2^2+3^2+5^2+8^2+\dots+f_n^2=f_nf_{n+1}$

$f_1=f_2=1$,$f_1^2=f_1f_2$                                 

$f_2=f_3-f_1$,$f_2^2=f_3f_2-f_1f_2$                           

$f_3=f_4-f_2$,$f_3^2=f_4f_3-f_2f_3$                           

.........

$f_n=f_{n+1}-f_{n-1}$,$f_n^2=f_nf_{n+1}-f_nf_{n-1}$     

(1)

(2)

(3)

......

(n)


(1)+(2)+(3)+....+(n) 得 $f_1^2+f_2^2+f_3^2+\dots+f_n^2=f_nf_{n+1}$

 

如果n=   (建議n小於51)

斐波拉契數列前n項平方和= 

 


Copyright ©昌爸工作坊 all rights reserved.