循環性遞迴數列 {an}

an=$\frac{a_{n-1}+1}{a_{n-2}}$,n≧3


(一):1,1,2,3,2,1,1,2,3,2,1,1,2,3,2,...
(二)2,3,2,1,12,3,2,1,12,3,2,1,1,...
(三):3,2,1,1,2,3,2,1,1,2,3,2,1,1,2,...

a3=$\frac{a_{2}+1}{a_{1}}$
a4=$\frac{a_{3}+1}{a_{2}}$=$\frac{\frac{a_{2}+1}{a_{1}}+1}{a_{2}}$=$\frac{a_{1}+a_{2}+1}{a_{1}a_{2}}$
a5=$\frac{a_{4}+1}{a_{3}}$=$\frac{\large\frac{a_{1}+a_{2}+1}{a_{1}a_{2}}+1}{\frac{a_{2}+1}{a_{1}}}$=$\frac{\frac{(a_{1}+1)(a_{2}+1)}{a_{1}a_{2}}}{\frac{a_{2}+1}{a_{1}}}$=$\frac{a_{1}+1}{a_{2}}$

a6=$\frac{a_{5}+1}{a_{4}}$=$\frac{\frac{a_{1}+1}{a_{2}}+1}{\frac{a_{1}+a_{2}+1}{a_{1}a_{2}}}$=a1

a7=$\frac{a_{6}+1}{a_{5}}$=$\frac{a_{1}+1}{\frac{a_{1}+1}{a_{2}}}$=a2

得知數列 {an}是前5項循環的數列

數列 {an}的第一項a1 = 第二項a2=   (a1和a2都是正整數)

列出前 n 項,n= ( n ≧ 3 )       

                                          

( n ≧ 3
,如果
an-2 不能整除an-1+1,則an取近似值到小數1位  )

   

 

Copyright ©昌爸工作坊 all rights reserved.